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Abstract. We use a polynomial decomposition result by Stapledon to show that the
numerator polynomial of the Ehrhart series of an open polytope is the difference of
two symmetric polynomials with nonnegative integer coefficients. We obtain a re-
lated decomposition for order polytopes and for the numerator polynomial of the
corresponding series for chromatic polynomials. The nonnegativity of the coefficients
in such decompositions provide inequalities satisfied by the coefficients of chromatic
polynomials for any simple graph.
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1 Introduction

Let P be a d-dimensional polytope with vertices in Zd, with Ehrhart polynomial LP(n)
counting the number of integer points in nP ([3]) and Ehrhart series EhrP(z) = 1 +

∑∞
n=1 LP(n)zn. It is known that the Ehrhart series is a rational function of the form

EhrP(z) =
h∗(z)

(1− z)d+1

where h∗(z) is a polynomial with nonnegative integer coefficients, of degree s = deg(h∗) ≤
d (see, for example, [1]). In 2008, Stapledon [13] proved that if l = d + 1− s then one can
find two symmetric polynomials a(z) = zda

(
1
z

)
and b(z) = zd−lb

(
1
z

)
with nonnegative

integer coefficients such that

(1 + z + · · ·+ zl−1)h∗(z) = a(z) + zlb(z).

In general, any polynomial can be written as the sum of two symmetric polynomials
[13, Lemma 2.3], but having nonnegative coefficients ai ≥ 0 and bi ≥ 0 is what is special
in the case of h∗-polynomials of convex lattice polytopes. If l = 1, this is stronger than
the fact that polynomials h∗ have nonnegative coefficients. Some of these inequalities
were already known due to results in commutative algebra [5, 11], and the work by
Stapledon provided a new geometric proof of these facts.
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Denote by P◦ the interior of P and by LP◦(n) the number of lattice points in the
interior of nP. Similarly, we denote Ehr◦P(z) = ∑∞

n=1 LP◦(n)zn. Our first result is a poly-
nomial decomposition for the numerator polynomial of Ehr◦P(z) for any lattice polytope.

Theorem 1.1. Let P be a lattice polytope of dimension d. Let hP be the numerator polynomial of
the Ehrhart series of the open polytope P◦. Then hP can be decomposed as

hP(z) = aP(z)− bP(z)

where aP(z) = zd+1aP

(
1
z

)
and bP(z) = zdbP

(
1
z

)
are symmetric polynomials with nonnegative

coefficients.

An interesting question to ask is if it is possible to get similar decompositions for
other combinatorial polynomials. There is a close relationship between the chromatic
polynomial of a graph G and Ehrhart polynomials of order polytopes corresponding to
different posets obtained from G by fixing an acyclic orientation.

In case that P is an order polytope we can modify Theorem 1.1 and prove the follow-
ing result.

Theorem 1.2. Let OΠ be an order polytope of dimension d (corresponding to a poset Π on d
vertices). Let hΠ be the numerator polynomial of the Ehrhart series of O◦Π, i. e. such that

EhrO◦Π(z) =
hΠ(z)

(1− z)d+1 .

Then hΠ can be decomposed as hΠ(z) = aΠ(z) + zbΠ(z) where the polynomials aΠ(z) and
bΠ(z) are symmetric with aΠ(z) = zd+1aΠ

(
1
z

)
and bΠ(z) = zdbΠ

(
1
z

)
, and so that bΠ(z) and

−aΠ(z) have nonnegative coefficients.

Let G be a graph with d vertices and chromatic polynomial χG(n). Define hG(z) to
be the polynomial such that

∞

∑
n=0

χG(n)zn =
hG(z)

(1− z)d+1 .

Theorem 1.3. Let G be a graph on d vertices. Then the polynomial zhG(z) can be decomposed
as zhG(z) = a(z) + zb(z) where a(z) = zd+1a

(
1
z

)
and b(z) = zdb

(
1
z

)
are symmetric, and so

that b(z) and −a(z) have nonnegative coefficients.

The polynomial zhG(z) appears naturally as the numerator polynomial for the sum
of the Ehrhart series for a set of open order polytopes related with the graphs. The fact
that the coefficients of a(z) and b(z) are nonnegative can be used to obtain the following
inequalities.
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Theorem 1.4. For any graph G with d vertices, hG(z) is a polynomial of degree d with nonneg-
ative coefficients. Also, if hG(z) = ∑d

i=0 hizi, then for 1 ≤ i ≤ b d+1
2 c,

hd + · · ·+ hd−i+1 − h0 − · · · − hi−1 ≥ 0.

Since it is possible to write the coefficients of hG as linear combinations in the coeffi-
cients of χG, Theorem 1.4 gives us a family of inequalities that must be satisfied by the
coefficients of chromatic polynomials.

We continue as follows. In Section 2 we go through the definition and main proper-
ties of order polytopes and their relationship with chromatic polynomials. In Section 3
we state some basic facts of Ehrhart theory and the Stapledon decomposition from [13].
Section 4 contains the proofs of Theorems 1.1 and 1.2 while in Section 5 we prove Theo-
rem 1.3 and Theorem 1.4. Section 6 include some further conjectures that might improve
the inequalities from Theorem 1.4 (see Conjecture 6.5).

2 Order Polytopes and Chromatic Polynomials

Here we recall some basic facts about order polytopes and their relationship with chro-
matic polynomials and Ehrhart Theory. Let Π be a poset on d elements p1, . . . , pd. Denote
by ΩΠ(n) the number of weak order-preserving maps from Π to {1, . . . , n}. These are maps
φ : Π→ {1, . . . , n} so that if pi <Π pj, then φ(pi) ≤ φ(pj). Also let Ω◦Π(n) be the number
of strict order-preserving maps Π to {1, . . . , n} (so that if pi <Π pj, then φ(pi) < φ(pj)).
These functions are known as order polynomials, due to the following result.

Theorem 2.1 (Stanley [9]). The functions ΩΠ(n) and Ω◦Π(n) are polynomials in n, such that

Ω◦Π(n) = (−1)dΩΠ(−n).

The order polytope OΠ corresponding to a poset Π is defined as

OΠ = {x ∈ Rd : 0 ≤ xi ≤ 1 for all i, and xi ≤ xj whenever pi ≤Π pj}.

Theorem 2.2 (Stanley, [10]). The polynomials ΩΠ(n) and Ω◦Π(n) are related to the Ehrhart
polynomial of the order polytope OΠ by the formulas

LOΠ(n) = ΩΠ(n + 1),

LO◦Π(n) = Ω◦Π(n− 1).

Let G = (V, E) be a graph with vertices V = {v1, . . . , vd}. The chromatic polynomial
χG(n) counts the maps φ : V → {1, . . . , n} such that φ(vi) 6= φ(vj) whenever vivj is an
edge of G. An orientation of G is given by a subset ρ ⊆ E of the edges of G, so that
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an edge vivj ∈ E with i < j is oriented from vi to vj if {vi, vj} /∈ ρ or from vj to vi if
{vi, vj} ∈ ρ.

An oriented path is a sequence of vertices va1 , . . . , vak so that there is an oriented edge
from vai to vai+1 . An oriented cycle is an oriented path so that va1 = vak . An acyclic
orientation of a graph G is an orientation of G without oriented cycles. Each acyclic
orientation ρ of G defines a poset Πρ on the vertex set V, where vi ≤ρ vj if there is an
oriented path va1 , . . . , vak from vi = va1 to vj = vak . Since ρ is acyclic, the relationship ≤ρ

is transitive and antisymmetric. It is also reflexive if we admit oriented paths of length
zero (with k = 1).

The following is a description of the chromatic polynomials in terms of acyclic orien-
tations.

Proposition 2.3 (Stanley, [12]). The chromatic polynomial χG(n) of a graph G is the sum of
the strict order polynomials for all acyclic orientations ρ of G

χG(n) = ∑
ρ acyclic

Ω◦Πρ
(n).

3 Ehrhart h∗-vectors and Stapledon Decomposition

A triangulation of a polytope P is a collection of simplices so that their union is P and the
intersection of two simplices is a face on the boundary of both simplices (maybe empty).
A triangulation of P is unimodular if all simplices have integer vertices and minimal
volume 1/d!. Any order polytope has a unimodular triangulation by subdividing it
through all hyperplanes of the form xi = xj. Each of these simplices is an order polytope
by itself, corresponding to a poset that is a total order on the d elements.

Let P be a lattice d-polytope with Ehrhart series EhrP(z) =
h∗(z)

(1− z)d+1 . If P has a

unimodular triangulation T, it is known that the h∗ polynomial can be obtained from
the f -vector of T. If fi counts the number of i-dimensional faces of T (and set f−1 = 1
for the empty face), we construct the f -polynomial

fT(z) =
d+1

∑
i=0

fi−1zi.

We define the h-polynomial of T to be

hT(z) = (1− z)d+1 fT

(
z

1− z

)
. (3.1)

Then h∗(z) = hT(z) is precisely the h-polynomial for any unimodular triangulation
T of P (see Betke–McMullen [2]).

The following is known as the Ehrhart–Macdonald Reciprocity for Ehrhart series. A
proof can be found, e. g., in [1, Theorem 4.4].
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Theorem 3.1 ([7]). If P is a lattice d-polytope, then EhrP◦(z) = (−1)d+1 EhrP

(
1
z

)
.

Corollary 3.2. If P is a lattice d-polytope and EhrP◦(z) =
hP(z)

(1− z)d+1 , then hP(z) = zd+1h∗
(

1
z

)
is a monic polynomial of degree d + 1.

Proof. By Theorem 3.1, EhrP◦(z) =
h∗
(

1
z

)
(

1
z − 1

)d+1 =
zd+1h∗

(
1
z

)
(1− z)d+1 . Then hP(z) = zd+1h∗

(
1
z

)
is obtained by reversing the coefficients of the h∗-polynomial. Since h∗0 = 1 for any
polytope P, then hP(z) is monic and deg(hP) = d + 1.

Proposition 3.3 (Stapledon [13]). Let h(z) be any polynomial of degree deg(h) = s ≤ d, and
l = d+ 1− s. Then there are unique symmetric polynomials a(z) and b(z) with a(z) = zda

(
1
z

)
and b(z) = zs−1b

(
1
z

)
so that (1 + z + · · ·+ zl−1)h(z) = a(z) + zlb(z).

Proof. From [13, Lemma 2.3] we have explicit formulas for the coefficients of the polyno-
mials. If a(z) = ∑d

i=0 aizi, b(z) = ∑s−1
i=0 bizi and h(z) = ∑d

i=0 hizi, then take

ai = h0 + h1 + · · ·+ hi − hd − · · · − hd−i+1, (3.2)
bi = −h0 − h1 − · · · − hi + hs + · · ·+ hs−i. (3.3)

It is easy to check that the polynomials a(z) and b(z) obtained this way are symmetric,
with ai = ad−i and bi = bs−1−i, and it holds that (1 + z + · · ·+ zl−1)h(z) = a(z) + zlb(z).
The uniqueness is easy to check from the linearity.

Notice that the polynomials a(z) and b(z) have integer coefficients if h(z) has integer
coefficients. Also, if s = d then l = 1 and we get a decomposition of h(z) as a sum of
symmetric polynomials h(z) = a(z) + zb(z).

Theorem 3.4 (Stapledon [13]). Let h∗(z) be the numerator polynomial of the Ehrhart series of
P. Let s = deg(h∗), l = d + 1− s and consider the symmetric polynomials a(z) = zda(1

z ) and
b(z) = zd−lb(1

z ) such that

(1 + z + · · ·+ zl−1)h∗(z) = a(z) + zlb(z)

that exist and are unique due to Proposition 3.3. Then the polynomials a(z) and b(z) have
non-negative integer coefficients.
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4 Polynomial Decompositions for Open Lattice Polytopes

Proof of Theorem 1.1. Consider the Stapledon decomposition of the polytope P given by
symmetric polynomials a∗(z) = zda∗

(
1
z

)
, b∗(z) = zs−1b∗

(
1
z

)
so that

(1 + · · ·+ zl−1)h∗(z) = a∗(z) + zlb∗(z). (4.1)

where h∗(z) is the numerator polynomial of EhrP(z). By Theorem 3.4, a∗(z) and b∗(z)
have nonnegative coefficients.

We also apply Theorem 3.4 to a polytope P̂ that is a pyramid over P of height one.
More precisely, take P̂ = conv({0} ∪ {(v, 1) : v vertex of P}). It is known that P and P̂
have the same h∗ polynomial. (See for example [1, Theorem 2.4].)

Then we can find symmetric polynomials â(z) = zd+1 â
(

1
z

)
, b̂(z) = zs−1b̂

(
1
z

)
with

nonnegative coefficients, so that

(1 + · · ·+ zl)h∗(z) = â(z) + zl+1b̂(z). (4.2)

Notice that b∗(z) = b̂(z), since the formula (3.3) does not depend on d, but only on s.
Multiplying (4.1) by z and subtracting it from (4.2) we find that

h∗(z) = â(z)− za∗(z).

Then by Corollary 3.2, hP(z) is obtained by reversing the h∗(z) numerator polynomial,

hP(z) = zd+1h∗
(

1
z

)
= zd+1 â

(
1
z

)
− zda∗

(
1
z

)
= â(z)− a∗(z). (4.3)

If we take a(z) = â(z) and b(z) = a∗(z) we get the desired decomposition. Notice
that a(z) = zd+1a

(
1
z

)
and b(z) = zdb

(
1
z

)
, and both polynomials have nonnegative

coefficients.

Proof of Theorem 1.2. Given a poset Π we are interested in the decomposition hΠ(z) =

aΠ(z) + zbΠ(z), with a(z) = zd+1a
(

1
z

)
and b(z) = zdb

(
1
z

)
of the numerator polynomial

hΠ(z) of the Ehrhart series of the open polytope O◦Π. This decomposition is unique due

to Proposition 3.3. By Corollary 3.2, hΠ(z) is obtained by hΠ(z) = zd+1h∗
(

1
z

)
, where

h∗(z) is the numerator polynomial of EhrOΠ(z).
For this we need to apply Theorem 1.1 to a polytope that is a projection of OΠ. Denote

by µ the orthogonal projection from Rd to the (d− 1)-dimensional space H0 = {x ∈ Rd :
∑d

i=1 xi = 0} and let ei be the canonical basis of Rd (for 1 ≤ i ≤ d). The integer lattice
Zd is projected orthogonally to the lattice L ⊂ H0 generated by µ(e1), . . . , µ(ed−1). Note
that µ(ed) = −∑d−1

i=1 µ(ei). Consider the projected polytope µ(OΠ) ⊆ H0. It is a lattice
polytope in H0 so that it holds the following.
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Lemma 4.1. The Ehrhart series of OΠ and µ(OΠ) have the same numerator polynomial h∗, that
is,

Ehrµ(OΠ)(z) =
h∗(z)

(1− z)d .

Proof. Let T be the triangulation of OΠ obtained by subdividing it through all hyper-
planes of the form xi = xj. Notice that all unimodular simplices ∆ in T are projected
by µ to unimodular simplices in H0 (with respect to the lattice L). This is because the
vertices of any of such simplex ∆ contain a basis of Zd, and therefore their projections
must generate L by integer linear combinations. The points (0, . . . , 0) and (1, . . . , 1) are
vertices of each simplex ∆ in T and both are projected to the origin in H0. The projec-
tion of all other d− 1 vertices of ∆ is then an integer basis of L and µ(∆) is unimodular.
Therefore we obtain a unimodular triangulation Tµ for µ(OΠ) that comes from projecting
all simplices ∆ in T by µ.

If fµ(z) is the f -polynomial of Tµ, then the f -polynomial of T is

fT(z) = fTµ(z)(1 + z),

since combinatorially T is a cone over Tµ where the projection of the origin is split into
two vertices in T that belong to all maximal simplices. Using (3.1) we find that

h∗(z) = hT(z) = (1− z)d+1 fT

(
z

1− z

)
= (1− z)d+1

(
1 +

z
1− z

)
fTµ

(
z

1− z

)
= (1− z)d+1

(
1

1− z

)
fTµ

(
z

1− z

)
= (1− z)d fTµ

(
z

1− z

)
= hTµ(z).

The last equality is due to the fact that dim Tµ = d− 1, and this dimension is used in the
corresponding formula for hTµ from (3.1).

This result can be also seen by noticing that the triangulations T and Tµ are always
regular and therefore shellable, and they have the same h-vector. In [4] it is explained
why order polytopes are compressed, and therefore have regular unimodular triangu-
lations, and also how these properties are preserved under the projection µ. Projected
order polytopes are also examples of alcoved polytopes. See [6] for more information,
including a description of the h∗-vector of OΠ using the number of descents of the linear
extensions of Π.

Now we are ready to describe the decomposition of hΠ(z). First apply Theorem 3.4
to polytope OΠ. There are symmetric polynomials a∗(z) and b∗(z) with nonnegative
coefficients and with a∗(z) = zda∗

(
1
z

)
and b∗(z) = zs−1b∗

(
1
z

)
so that

(1 + · · ·+ zl−1)h∗(z) = a∗(z) + zlb∗(z). (4.4)
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Applying Theorem 3.4 this time to polytope µ(OΠ) we find polynomials a∗1(z) and b∗1(z)

with nonnegative coefficients, and with a∗1(z) = zd−1a∗1
(

1
z

)
and b∗1(z) = zs−1b∗1

(
1
z

)
so

that
(1 + · · ·+ zl−2)h∗(z) = a∗1(z) + zl−1b∗1(z). (4.5)

In this case the value of s is the same, but d and l have to be reduced by 1 to use the
same notation as with OΠ. Also we can see that b∗(z) = b∗1(z), since the formula (3.3)
for the coefficients of the b polynomials does not depend on d but only on s.

Lemma 4.2. If we decompose hΠ(z) = aΠ(z)+ zbΠ(z) as the sum of two symmetric polynomials
aΠ and bΠ, with aΠ(z) = zd+1aΠ

(
1
z

)
and bΠ(z) = zdbΠ

(
1
z

)
, then necessarily bΠ(z) = a∗(z)

and aΠ(z) = −za∗1(z).

Proof. By Proposition 3.3, such a decomposition is unique (for degree d + 1). So it is
enough to check that the proposed polynomials bΠ(z) = a∗(z) and aΠ(z) = −za∗1(z)
satisfy the required conditions. Similar to the proof of Theorem 1.1, if we multiply (4.5)
by z and subtract it from (4.4), using that b∗(z) = b∗1(z) we can check that

h∗(z) = a∗(z)− za∗1(z).

From Corollary 3.2 we have

hΠ(z) = zd+1h∗
(

1
z

)
= zd+1a∗

(
1
z

)
− zd+1

(
1
z a∗1
(

1
z

))
= za∗(z)− za∗1(z).

If bΠ(z) = a∗(z) and aΠ(z) = −za∗1(z), we have that

hΠ(z) = za∗(z)− za∗1(z) = aΠ(z) + zbΠ(z).

Also bΠ(z) = zdbΠ

(
1
z

)
and zd+1aΠ

(
1
z

)
= −zd+1

(
1
z a∗1
(

1
z

))
= −zda∗1

(
1
z

)
= aΠ(z), so

these are symmetric polynomials that satisfy the desired conditions.

Now it is clear that the polynomial bΠ has nonnegative coefficients while the polyno-
mial aΠ has nonpositive coefficients, due to the nonnegativity of the polynomials in the
Stapledon decomposition. This completes the proof of Theorem 1.2.

5 Inequalities for Chromatic Polynomials

Proof of Theorem 1.3. Due to Proposition 2.3 and since LO◦Π(n) = Ω◦Π(n− 1),

∞

∑
n=1

χG(n− 1)zn =
∞

∑
n=1

∑
ρ acyclic

Ω◦Πρ
(n− 1)zn

= ∑
ρ acyclic

∞

∑
n=1

L◦Πρ
(n)zn = ∑

ρ acyclic
EhrO◦Πρ

(z)
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and then the numerator polynomial of this series is

zhG(z) = ∑
ρ acyclic

hΠρ(z), (5.1)

namely the sum of the corresponding numerator polynomials of the Ehrhart series of
the open order polytopes corresponding to the posets Πρ for all acyclic orientations ρ.

Now to find the decomposition zhG(z) = a(z) + zb(z), with a(z) and b(z) symmetric
so that a(z) = zd+1a

(
1
z

)
and b(z) = zdb

(
1
z

)
, it is enough to find the corresponding

decomposition for the polynomials hΠρ(z) and add them up together, since the formulas
(3.2) and (3.3) are linear, and all polynomials hΠρ(z) have degree s = d + 1 and l = 1.

So if hΠρ(z) = aΠρ(z) + zbΠρ(z) for polynomials as claimed in Theorem 1.2, then the
decomposition for zhG(z) is given by

a(z) = ∑
ρ acyclic

aΠρ(z) and b(z) = ∑
ρ acyclic

bΠρ(z), (5.2)

and it is clear that necessarily b(z) and −a(z) have nonnegative coefficients.

Proof of Theorem 1.4. From Corollary 3.2 and (5.1) we can see that zhG(z) is a polynomial
of degree d + 1 with nonnegative coefficients, and therefore deg(hG) = d. Moreover we
observe that the leading coefficient hd is equal to the number of acyclic orientations of G.
Due to Proposition 3.3 applied to zhG(z) and equations (3.2) and (3.3) we can find that
the coefficients of the polynomials a(z) and b(z) are

ai = 0 + h0 + h1 + · · ·+ hi−1 − hd − · · · − hd−i+1, (5.3)
bi = −0− h0 − h1 − · · · − hi−1 + hd + · · ·+ hd−i, (5.4)

where a(z) = ∑d+1
i=0 aizi and b(z) = ∑d

i=0 bizi. Here the decomposition is made with
respect to degree s = d + 1, and l = 1. From Theorem 1.3 we get the inequalities −ai ≥ 0
for all i between 1 and b d+1

2 c, that give us the desired result.

Notice that the inequalities bi ≤ 0 for 0 ≤ i ≤ d are weaker than those of the form
−ai ≥ 0, since bi = −ai + hd−i ≥ −ai. Since the polynomial a(z) is symmetric, we do not
get anything new for i > b d+1

2 c.

6 Further Conjectures

We would like to know if the following conjecture holds.

Conjecture 6.1. Let G be a graph with d vertices. Then hG(z) can be decomposed as hG(z) =
a(z) + zb(z) where a(z) = zda

(
1
z

)
and b(z) = zd−1b

(
1
z

)
are symmetric polynomials such

that b(z) and −a(z) have nonnegative coefficients.
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The following is the corresponding conjecture for open order polytopes.

Conjecture 6.2. Let OΠ be an order polytope of dimension d and let pΠ be the numerator
polynomial of the series

∞

∑
n=1

Ω◦Π(n)z
n =

pΠ(z)
(1− z)d+1 .

Then pΠ can be decomposed as pΠ(z) = a(z) + zb(z) where the polynomials a(z) and b(z)
are symmetric with a(z) = zda

(
1
z

)
and b(z) = zd−1b

(
1
z

)
, and so that b(z) and −a(z) have

nonnegative coefficients.

Due to Theorem 2.2 we have LO◦Π(n) = Ω◦Π(n− 1). Then the numerator polynomials
of the corresponding series satisfy pΠ(z) = 1

z hΠ(z), since we shift the series one posi-

tion. Also, by Corollary 3.2, we can write pΠ(z) = zdh∗
(

1
z

)
, where h∗(z) denotes the

numerator polynomial of EhrOΠ(z). This is always a polynomial, since deg(h∗) ≤ d.
It is clear that Conjecture 6.1 is a consequence of Conjecture 6.2, since it is obtained

simply by adding the corresponding decomposition of each poset Πρ for all acyclic ori-
entations ρ of G.

After some computer experimentation (mainly using the mathematical software Sage
[8]), we believe these conjectures are true.

Conjecture 6.3. For any order d-polytope OΠ different from the d-cube Cd, there is a lattice
polytope PΠ of dimension d− 2 so that the numerator polynomial of its Ehrhart series EhrPΠ(z)
is equal to h∗(z), the numerator polynomial of EhrOΠ(z).

Proposition 6.4. Conjecture 6.3 implies Conjecture 6.2.

Proof. First let us consider the case when Π is the poset on d elements where no pair of
elements are comparable. For this Π it holds that OΠ = [0, 1]d is the unit d-cube Cd. It is
well known that in this case we have that

h∗(z) =
d−1

∑
k=0

A(d, k)zk

where the coefficients of the polynomial are given by the Eulerian numbers A(d, k) that
count the number of permutations of {1, . . . , d} that have exactly k descents (see for
example [1, Section 2.2]). This is a symmetric polynomial satisfying h∗(z) = zd−1h∗

(
1
z

)
,

whose coefficients satisfy many interesting combinatorial relationships. In this case

pΠ(z) = zdh∗
(

1
z

)
= zh∗(z),

and the decomposition in Conjecture 6.2 for pΠ is given by a(z) = 0 and b(z) = h∗(z),
which satisfies the required conditions.
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Now we consider the case where there is at least one order relationship between a
pair of elements in Π. Then the order polytope OΠ is different from the cube Cd, since
we are subdividing it with at least one hyperplane. So by Conjecture 6.3 we can assume
the existence of a (d− 2)-polytope PΠ such that the numerator polynomial of EhrPΠ(z)
is precisely h∗(z).

Applying Theorem 1.1 to this polytope, we find that the numerator polynomial hPΠ

of the open Ehrhart series Ehr◦PΠ
(z) is

hPΠ(z) = aPΠ(z)− bPΠ(z)

where aPΠ(z) = zd−1aPΠ

(
1
z

)
and bPΠ(z) = zd−2bPΠ

(
1
z

)
and both polynomials aPΠ(z)

and bPΠ(z) have nonnegative coefficients.
By Corollary 3.2, hPΠ(z) = zd−1h∗(z) and then

pΠ(z) = zdh∗
(

1
z

)
= zhPΠ(z) = zaPΠ(z)− zbPΠ(z).

We can check that the desired decomposition from Conjecture 6.2 is given by a(z) =
−zbPΠ(z) and b(z) = aPΠ(z). This decomposition is unique due to Proposition 3.3.
Clearly b(z) and −a(z) have nonnegative coefficients.

In case Conjecture 6.3 is true, we would like to know if it is possible to find one such
polytope PΠ having a unimodular triangulation that is combinatorially equivalent to the
triangulation obtained by intersecting µ(OΠ) with the boundary of µ(Cd). This would
be stronger than Conjecture 6.3.

Analog to Theorem 1.4, our conjectures would imply the following inequality for the
coefficients of chromatic polynomials.

Conjecture 6.5. Let G be a graph on d vertices and hG(z) = ∑d
i=0 hizi. Then for 1 ≤ i ≤ b d

2c
it holds that

hd + · · ·+ hd−i+1 − h0 − · · · − hi ≥ 0.

Proposition 6.6. Conjecture 6.1 implies Conjecture 6.5.

Proof. In case Conjecture 6.1 holds we have the decomposition hG(z) = a(z) + zb(z)
where a(z) = zda

(
1
z

)
, b(z) = zd−1b

(
1
z

)
and so that b(z) and −a(z) have nonnegative

coefficients. Due to Proposition 3.3 and equations (3.2) and (3.3), the coefficients of the
polynomials a(z) and b(z) are

ai = h0 + h1 + · · ·+ hi − hd − · · · − hd−i+1,
bi = −h0 − h1 − · · · − hi + hd + · · ·+ hd−i.

Here s = d and l = 1. From the inequalities −ai ≥ 0 for all i between 1 and b d
2c we get

the desired result.

As before, the inequalities bi ≥ 0 and −ai ≥ 0 for i > b d
2c give us nothing new. The

inequalities in Conjecture 6.5 are stronger than those in Theorem 1.4, since hi+1 ≥ 0.



12 Emerson León

Acknowledgements

I want to thank Matthias Beck for suggesting this problem and to him, Tristram Bogart
and Julián Pulido for many useful conversations and comments on the script. Also
thanks to the organizers of ECCO 2016 (Escuela Colombiana de Combinatoria 2016,
Medellín, Colombia) and to Universidad de los Andes for their support.

References

[1] M. Beck and S. Robins. Computing the Continuous Discretely. Undergraduate Texts in Math-
ematics. Springer, 2007.

[2] U. Betke and P. McMullen. “Lattice points in lattice polytopes”. Monatshefte für Math. 99
(1985), pp. 253–265. DOI.

[3] E. Ehrhart. “Sur les polyèdres rationnels homothétiques à n dimensions”. C. R. Acad. Sci.
Paris 254 (1962), pp. 616–618.

[4] C. Haase, A. Paffenholz, L. C. Piechnik, and F. Santos. “Existence of unimodular triangu-
lations - positive results”. 2014. arXiv:1405.1687.

[5] T. Hibi. “Some results on Ehrhart polynomials of convex polytopes”. Discrete Math. 83
(1990), pp. 119–121. DOI.

[6] T. Lam and A. Postnikov. “Alcoved polytopes I”. Discrete Comput. Geom. 38 (2007), pp. 453–
478. DOI.

[7] I. G. Macdonald. “Polynomials associated with finite cell-complexes”. J. London Math. Soc.
(2) 4 (1971), pp. 181–192. DOI.

[8] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.3). 2016.
URL.

[9] R. P. Stanley. “A chromatic-like polynomial for ordered sets”. Proc. Second Chapel Hill Con-
ference on Combinatorial Mathematics and its Applications. 1970, pp. 421–427.

[10] R. P. Stanley. “Two poset polytopes”. Discrete Comput. Geom. 1 (1986), pp. 9–23. DOI.

[11] R. P. Stanley. “On the Hilbert function of a Cohen-Macaulay domain”. J. Pure. Appl. Algebra
73 (1991), pp. 307–314. DOI.

[12] R. P. Stanley. “Acyclic orientations of graphs”. Discrete Math. 306 (2006), pp. 905–909. DOI.

[13] A. Stapledon. “Inequalities and Ehrhart δ-Vectors”. Trans. Amer. Math. Soc. 361 (2009),
pp. 5615–5626. DOI.

https://doi.org/10.1007/BF01312545
https://arxiv.org/abs/1405.1687
https://doi.org/10.1016/0012-365x(90)90226-8
https://doi.org/10.1007/s00454-006-1294-3
https://doi.org/10.1112/jlms/s2-4.1.181
http://www.sagemath.org
https://doi.org/10.1007/bf02187680
https://doi.org/10.1016/0022-4049(91)90034-y
https://doi.org/10.1016/j.disc.2006.03.010
https://doi.org/10.1090/s0002-9947-09-04776-x

	Introduction
	Order Polytopes and Chromatic Polynomials
	Ehrhart h*-vectors and Stapledon Decomposition
	Polynomial Decompositions for Open Lattice Polytopes
	Inequalities for Chromatic Polynomials
	Further Conjectures

